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ABSTRACT: A polymer-sheeting-die-design methodology
is presented that integrates a simulation of the polymer melt
flow and die-cavity deformation with numerical optimization
to compute a die-cavity geometry capable of giving a nearly
uniform exit flow rate. Both the polymer melt flow and sheet-
ing-die deformation are analyzed with a general-purpose fi-
nite-element program. The approach includes a user-defined
element that is used to evaluate the purely viscous non-
Newtonian flow in a flat die. The flow analysis, which is

simplified with the Hele–Shaw approximation, is coupled to
a three-dimensional finite-element simulation for die defor-
mation. In addition, shape optimization of a polymer sheeting
die is performed by the incorporation of the coupled analyses
in our constrained optimization algorithm. A sample problem
is discussed to illustrate the die-design methodology. � 2006
Wiley Periodicals, Inc. J Appl Polym Sci 103: 3994–4004, 2007
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INTRODUCTION

The analysis and design of the polymer extrusion
process used to produce thin sheets and films have
received much attention over the last few decades,
but only a few reports have appeared in the literature
that analyze the die deformation.1,2 It is well known
that high internal pressure within the viscous poly-
mer flow causes die deformation, which can have a
significant effect on the flow distribution in the die
and the melt velocity over the die exit. As a result,
die designs that neglect die-body deformation may
not perform as desired.

The primary focus of most sheet- or slit-die designs
is the development of a uniform velocity across the
width of the die exit. Various design approaches have
been applied to T-dies, fish-tail dies, and coat-hanger
dies in which the cross-section geometry of the distri-
bution manifold is defined over the width of the die
to yield a uniform exit velocity.3 Sheeting dies have
also been designed on the basis of one-dimensional
(1D) flow for slowly reacting polymeric liquids.4

Recently, sheeting-die designs have been computed
with two-dimensional (often called 2.5D) melt flow
simulations with an isothermal power-law fluid, a
Carreau–Yasuda fluid, and other more complicated
generalized Newtonian fluid models.5,6 Sartor7 was

perhaps the first to combine numerical optimization
with a two-dimensional (2D) flow network analysis
to iteratively solve the die-design problem with a
power-law fluid model. Smith et al.8 developed a fi-
nite-element simulation based on the Hele–Shaw
flow approximation similar to that used in injection-
molding simulations.9 More recently, Smith and
Wang6 extended the earlier optimization approaches
to include various generalized Newtonian fluid
models, and they addressed variability in die design
by including an adjustable choker bar in the melt
flow analysis and design.10 In both of their articles,
constraints were defined to measure the die’s exit-
velocity variation, and design sensitivity expressions
were developed that greatly reduced the computa-
tional effort required in the design-optimization cal-
culations.

The flow of a polymer melt in sheeting dies has also
been evaluated with three-dimensional (3D) flow equa-
tions with numerical approaches, such as the finite-ele-
ment method, to solve for the pressures, velocities, and
temperatures in the flow.11–14 These simulations have
assumed isothermal flow, which is justified in part by
the work of Pittman and Sander.15 Also considered are
coextrusion,12 wall slip,13 and die swell.14 More
recently, numerical optimization methods have been
combined with 3D melt flow simulations, which pro-
vide a powerful technique for designing die cav-
ities.16,17 This type of design methodology allows a
more general definition of the die cavity and may
include more complex flow fields and constitutive
behavior. Unfortunately, these efforts have mostly
focused on die-cavity-design problems without consid-
ering the influence of die-body deformation.
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It is well understood that die-body deformation has a
strong effect on the design and operation of extrusion
dies, but surprisingly, it has received relatively little
attention in the literature. Previous work includes a 1D
flow analysis and a deformation analysis, but they
ignored the effect that the melt pressure has on the de-
formation of the die body.18,19 More recently, Sander
and Pittman1 developed a fully coupled approach, us-
ing a 2.5D Hele–Shaw flow simulation to calculate the
melt pressure and a 2D thick-plate analysis for die
deflection. The predicted results agreed closely with ex-
perimental data for a die with a relatively simple inter-
nal flow channel and die-body geometry. However,
Sander and Pittman avoided the full 3D analysis and
more complex die geometry ‘‘because of their high
computational demands’’.1 A 3D flow analysis coupled
with a full 3D die-deformation analysis appears in Gif-
ford’s work.2 Unfortunately, this earlier approach re-
quired specialized software to evaluate the polymer
flowwithin the die and to include the effect of die defor-
mations. Furthermore, the computational efforts re-
quired to obtain more accurate 3D solutions can be ex-
cessive when used in an iterative design procedures,
particularly when applied to detailed industrial designs.

This article considers an optimization-based ap-
proach for designing polymer extrusion dies in which
the die-cavity geometry is computed to minimize the
die-inlet pressure (Pin) while delivering a uniform exit
flow rate. The proposed approach enhances previous
design methodologies by incorporating the flow analy-
sis and 3D die-deformation analysis in the optimiza-
tion-based design methodology. Die deformation is
analyzed in this approach with the general-purpose
finite-element program ABAQUS20 which is also used
to solve the generalized Hele–Shaw flow equation for
an isothermal Carreau–Yasuda fluid to obtain the
pressure field on the internal surface of the die body.
Upon the completion of the coupled fluid–structure
interaction analysis, Sequential Quadratic Program-
ming (SQP) in Design Optimization Tools (DOT)21 is
used to solve the optimization problems. An example
of a coat-hanger die is provided to demonstrate the
proposed methodology.

MELT FLOW GOVERNING EQUATION

The Hele–Shaw flow model can be derived from the
principles of conservation of mass, momentum, and
energy to provide a simplified governing equation
for non-Newtonian and inelastic flows in thin cav-
ities.9 In this analysis, inertial, body, and surface-ten-
sion forces in the fluid are assumed to be negligible.
Moreover, the pressure does not vary significantly in
the direction normal to the plane of flow, the die-
cavity thickness is assumed to be small in compari-
son with its in-plane dimensions and has little in-

plane variation, and all flow conditions are assumed
to be symmetric with respect to the cavity midplane.
The Hele–Shaw model is widely employed in injec-
tion and compression molding22 and has also been
applied to sheet extrusion dies.6,7,8,23–26

On the basis of these assumptions, the mass and
momentum conservation equations reduce to a sin-
gle differential equation:22

r � SrP ¼ 0 (1)

where P is the pressure field over the die cavity in
two dimensions and r is the gradient operator in
the plane of flow. S is the flow conductance defined
in terms of the viscosity, Z, as an integral through
the cavity thickness:22

S ¼
Z h

0

z2

Zð_gðzÞÞ dz (2)

where h is the half-height of the die cavity and coor-
dinate z is normal to the plane of flow. Z is a func-
tion of the strain-rate magnitude, _g, which is com-
puted for the generalized Hele–Shaw analysis at dis-
tance z from the midplane:

_g ¼ z

Z

��rP
�� (3)

where (krPk) is the magnitude of the pressure gra-
dient. The boundary conditions in the plane of flow
are P ¼ Pin and P ¼ 0 at the die inlet and exit,
respectively. We impose qP/qn ¼ 0 on impermeable
boundaries and symmetry planes, where q/qn
denotes the normal derivatives.

This study employs the Carreau–Yasuda fluid
model to define the non-Newtonian dependence of
Z on _g. The Carreau–Yasuda model exhibits near-
Newtonian behavior at low strain rates and captures
the power-law decay in Z as the strain rate increases.
It can be written as follows:27

Z ¼ Z1 þ ðZ0 � Z1Þ
h
1þ ðl _gÞa

iðn�1Þ=a
(4)

where Z0 is the zero-shear-rate viscosity, Z1 is the infi-
nite-shear-rate viscosity, l is a time constant, n is the
power-law index, and a is an empirically derived mate-
rial constant. Z1 ¼ 0 and a ¼ 2 are typical for a poly-
mer melt.28 Equation (2) cannot be evaluated analyti-
cally when the Carreau–Yasuda fluid model is
employed. The analysis is further complicated because
Z, defined in eq. (4), is a function of _g through eq. (3) in
the generalized Hele–Shaw formulation. To solve the
example to follow, we evaluate S in eq. (2) numerically
with an eight-point Gaussian quadrature, for which Z,
defined through eqs. (3) and (4), is computed at a
given value of z with a local Newton–Raphson itera-
tion, as described elsewhere.6
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The residual, R, for the boundary value problem
described in eq. (1) is obtained via the method of
weighted residuals29 in the usual manner (e.g., ref. 23):

RðPÞ ¼
Z
O
ro � SðPÞrP dO (5)

where o is an arbitrary weighting function and we
have assumed that there is no prescribed flow rate
on the boundary of the 2D flow domain, O. When
non-Newtonian fluids are evaluated, S in eq. (2)
becomes a function of P, and eq. (5) is nonlinear in P,
requiring iterative methods to compute a solution.
In this research, the nonlinear system of equations
derived from R appearing in eq. (5) is solved via the
Newton–Raphson iteration method because it exhib-
its terminal quadratic convergence. The tangent op-
erator, qR/qP, acting on the increment, [DP], is
obtained by the differentiation of eq. (5) with respect
to P:

qR
qP

½DP� ¼
Z
O
ro Sr½DP� þ qS

qP
½DP�rP

� �
dO (6)

Equation (2) is differentiated to obtain

qS
qP

½DP� ¼ �
Z h

0

z2

Z2

qZ
qP

½DP�dz (7)

Furthermore, eqs. (3) and (4) are differentiated with
respect to P, and following some mathematical manip-
ulations, we obtain qZ/qP appearing in eq. (7):

qZ
qP

½DP� ¼ ðn� 1Þðl _gÞaZðZ� Z1Þ
Zþ ðl_gÞaðZ1 þ nðZ� Z1ÞÞ

� �rP � r½DP�
krPk2

(8)

The isoparametric finite-element method (e.g., ref.
29) can be used to discretize the residual and tangent
operator in eqs. (5) and (6), respectively, and related
terms from eqs. (7) and (8). In the finite-element
analysis, P and R become the nodal pressure vector,
P, and the residual vector, R, respectively. In a simi-
lar manner, qR/qP in eq. (6) becomes the tangent
matrix, qR/qP. Once the residual and tangent matrix
are evaluated with the finite-element method, the
nodal-pressure-vector increment, DP, is computed at
iteration I with the Newton–Raphson method:

qRðPIÞ
qP

DP ¼ �RðPIÞ (9)

The nodal pressures are updated as PIþ1 ¼ PI þ DP.
Iterations are repeated until convergence is reached.
Once the pressure solution is obtained, the gapwise
average velocity, �v, is computed from

�v ¼ � S

h
rP (10)

In this work, eqs. (5)–(6) are discretized with the
Galerkin finite-element method and then solved with
the general-purpose finite-element program ABA-
QUS with a user-defined element (UEL).20 In this
approach, P within the die cavity is computed at
each node with Newton–Raphson iterations.

COUPLED ANALYSIS WITH
FLUID/STRUCTURE INTERACTION

It is clear that for a proper simulation of the die
design, it is necessary to couple the analysis of the
flow distribution and pressure field in the die cavity
with the analysis of the die-body deformation.
Indeed, the high internal pressure within the melt
flow causes die deformation, which, in turn, alters
the pressure field. Figure 1 illustrates the iterative
computational methodology used to solve the cou-
pled fluid–structure analysis. The coupled analysis
loop starts with the initialization of pressures and
nodal heights. These values are included in an input
file of the finite-element program together with a
UEL subroutine to calculate the nodal pressure solu-
tion. To better serve the 3D simulation in the finite-
element program, the nodal pressures are translated
into surface pressures. The resulting surface pres-
sures are then interpolated onto the mesh surface of
the die’s internal channel, and the linear elastic de-
formation of the die is calculated, corresponding to
those pressure loads.

The deformation caused by the melt pressure forces
the die channel to open; thus, the new and deformed
heights of the flow channel are generated. The newly
generated heights are then interpolated back to the
Hele–Shaw model to recalculate the pressure solution.
As the die flow channel opens, the change in pressure
in the die between iterations will decrease, reducing
the tendency of further deformation.2 The iterative
loop presented here normally takes three or four iter-
ations to converge in our example, as shown in
Figure 2. To reduce the computational time, an auto-
matic algorithm is developed in this work to compute
the coupled pressure solutions and die deformation,
and the overall simulation based on this automatic
algorithm can run on a personal computer with only
a few minutes of calculation.

COAT-HANGER DIE FLOW AND
DEFORMATION EXAMPLE

The sheeting-die design considered in this article is
derived from the coat-hanger die, which is com-
monly used in industrial applications and widely
studied and tested experimentally.6,23,30 The specific
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die geometry used in this study is shown in Figure
3; it is symmetric about the die’s centerline (i.e., x
¼ 0) and is similar to that presented elsewhere by
Gifford.13 It consists of four major regions, as shown
in Figure 3: the manifold, preland, secondary mani-
fold, and land. The purpose of the manifold is to
distribute the polymer melt uniformly across the die.
The secondary manifold and the land each have a
uniform cavity half-height and act as resistance to
the flow, which provides better flow uniformity.28

The land defines the thickness of the polymer melt
immediately exiting the die. The dimensions that de-
fine our die-cavity geometry are taken from Table I
of Gifford,13 except for the land gap, which is fixed
at 1.6 mm (i.e., die-exit half-height hexit ¼ 0.8 mm)
for the initial design in this article. The total die-exit
width is 1016 mm, which results in an exit-width-to-
height aspect ratio of 635. The die-inlet gap and
width are 19.05 and 101.6 mm, respectively, and the
total die length (including the inlet channel) is 330
mm, which includes the 137-mm-long inlet channel.
The land, secondary manifold, and preland lengths
along the die centerline are 25.4, 50.8, and 50.8 mm,
respectively. There is a flow channel along the top of
the die in the manifold region, which has a uniform

half-height in the y direction and a centerline length
of 15.2 mm. The manifold also includes a region hav-
ing a centerline length of 50.8 mm with a half-height
that decreases linearly in the y direction between the
flow channel and the die preland. For illustration, the
finite-element mesh in Figure 4 represents the entire
flow domain, in which the flow channel is modeled

Figure 1 Computational procedure for the coupled fluid–structure analysis.

Figure 2 Typical iteration history of the maximum deforma-
tion of the die body. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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with three-node triangular elements; however, all the
calculations to follow are performed with a half-
symmetry model in x � 0 (not shown) having 853
nodes and 1558 elements.

The flow of low-density polyethylene at 2708C is
selected at which material constants Z0 ¼ 800 Pa-s,
Z1 ¼ 0, l ¼ 0.02129 s, n ¼ 0.45958, and a ¼ 2 are
taken from Gifford.2 Pin is defined as 10 MPa, whereas
the outlet is defined as the zero pressure along die
exit. The cavity thickness is defined at each node. The
die-body geometry is determined by the parameters
listed in Table I of Gifford.2 The die is assumed to be
constructed of carbon steel with a Young’s modulus
of 2.068 � 1011 Pa and a Poisson’s ratio of 0.3. Figure
5 shows the finite-element mesh of one-half of the die
body with 109,060 elements containing 24,072 nodes.
The coat-hanger die used here has two planes of sym-
metry. Therefore, we only consider one quadrant of
the die in the structural analysis.

Figure 6 shows the deformed die-body geometry
after the convergence is reached. Because of the
plane of symmetry, only a quarter of the die-body
geometry is shown in Figure 6. The highest deforma-

tion occurs at the center position of the die exit, at
which h is increased by 23.6% from 0.8 to 0.989 mm.
The pressure distributions in the die for the unde-
formed and deformed die bodies are shown in
Figure 7(a,b), respectively. As expected, when the
die deformation is included in the simulation, the
pressure distribution across the die will change such
that the pressure decreases in the die as the die flow
channel opens up. Additionally, pressure isobars
along the die-exit region for the undeformed die
body are more uniform than those for the deformed
die body. This is because the largest deformation
occurs at the center position of the die exit, causing
the lower pressure at the center and higher pressure
at the edge of the die exit.

SHEETING-DIE-DESIGN OPTIMIZATION

In the die-design-optimization problem considered in
this study, the pressure drop across the die and the
die-exit-flow-rate variation define the success of a
given die design. These criteria are chosen because the
pressure drop determines the extruder size and power
requirements and the die-exit-flow-rate variation influ-
ences the sheet thickness uniformity. The goal of mini-
mizing Pin can be realized by the variation of the
thickness distribution in the die cavity while a con-
straint is placed on the die-exit-flow-rate variation and
the slope of the die cavity surface in the manifold
region is limited. The nonlinear constrained die-
design-optimization problem can be stated in terms of
the design variable vector, f, as follows:

Determine : f

To minimize : f ðfÞ ¼ Pin

Subject to : g1ðfÞ ¼ 1

L

Z
lexit

qðx;fÞ
qp

� 1

� �2

dx � e

g2ðfÞ ¼ MAX
dhðxÞ
dx

� �
� 0

fL
i � fi � fU

i ð11Þ

Figure 3 Coat-hanger die-cavity geometry.

TABLE I
Initial and Optimal Design Variables

and Performance Measures

Die design

Initial Optimal

Design variables
f1 ¼ Pin (MPa) 10.0 6.57
f2 (mm) 3.2 12.64
f3 (mm) 12.05 18.23
f4 (mm) 5.2 17.32
f5 (mm) 3.0 3.08
f6 (mm) 3.5 3.75
f7 (mm) 4.0 12.23

Constraint
g1 1.34 0.00013

Exit flow rates per unit of width (mm2/s)
Average 736.0 347.3
Maximum 853.6 364.2
Minimum 452.2 290.5
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where lexit denotes the die-exit edge. Pin is mini-
mized. This cost function represents the pressure
drop through the die because we fix the outlet pres-
sure (Pout) at 0. Constraint function g1 measures the
exit-flow-rate variation and is imposed to obtain a
uniform exit flow rate within the tolerance, e. In g1,
q(x,f) is the exit flow rate per unit of width, and qp
is the desired exit flow rate per unit of width. When
q(x,f) equals qp across the entire die exit, the die is
operating at the desired total flow rate, Q, which is
determined as follows:

Q ¼ 2

Z
lexit

qðx;fÞdx (12)

In the manifold region of the die cavity, the half-
height parameter, h(x), is arbitrary, so constraint g2
is imposed to restrict the slope of h in the x direction
to be less than zero. In the aforementioned optimiza-
tion problem, f is the design variable vector with
real components fi(i ¼ 1, 2, . . . N, where N is the
total number of design variables), limited by upper
and lower bounds fU

i and fL
i , respectively. In addi-

tion, h in the flow channel is constrained to decrease
along the centerline of the die.

COAT-HANGER DIE DESIGN EXAMPLE

In this example, the sheeting-die-design problem has
N ¼ 7 design variables that are included in f. Pin is
defined by the design as Pin ¼ f1 and is bounded by
1.0 MPa � Pin � 20 MPa. In addition, the half-heights
in the preland, manifold, and secondary manifold
regions shown in Figure 3 are defined by the remain-
ing six design variables. The half-height in the prel-
and region is defined as a constant, f2. h in the mani-
fold flow channel along the top of the die is defined
by the Lagrange interpolating polynomial in x:

hðxÞ ¼ ðx� L=2Þðx� LÞ
L2=2

h0 þ ðxÞðx� LÞ
�L2=4

f3

þ ðxÞðx� L=2Þ
L2=2

f4 ð13Þ

where L ¼ 508 mm is the die half-width and h0 is the
die half-height at x ¼ 0. Design variables f3 and f4 in
eq. (13) are the manifold half-heights at x ¼ L/2 and x
¼ L, respectively. The slope of h in the manifold region
of the die cavity is evaluated from eq. (13) as follows:

Figure 4 Finite-element mesh of the polymer melt flow domain. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Figure 5 Half-symmetry of the finite-element mesh of the undeformed die body. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]
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dhðxÞ
dx

¼ 2x� 1:5L

L2=2
h0 þ 2x� L

�L2=4
f3 þ

2x� L=2

L2=2
f4 (14)

This is constrained by g2 in eq. (11). h in the secondary
manifold region is defined by a cubic polynomial:

hðxÞ ¼ f5 þ ð�7:0f5 þ 8:0f6 � f7Þ
x

L

� �2

þ ð6:0f5 � 8:0f6 þ 2:0f7Þ
x

L

� �3

ð15Þ

where dh/dx ¼ 0 is imposed at x ¼ 0. In eq. (15), the

Figure 7 Pressure distribution in the die cavity. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

Figure 6 Displacement magnitude of the die body (deformation scale factor ¼ 336). [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]
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design variables f5, f6, and f7 are the secondary
manifold half-heights at x ¼ 0, x ¼ L/2, and x ¼ L,
respectively. The secondary manifold region can be
treated as a choker bar for which h(x,y) can be adjusted
independently; this assumes that an operator, or per-
haps an automatic control device, can make an adjust-
ment for flow conditions considered to facilitate the
optimal die flow operation. All half-height design var-
iables are bounded by 1.0 mm � fk � 19.05 mm (k ¼ 2,
3, . . . N) in the die-optimization problem. The desired
exit flow rate per unit of width is q ¼ 350 mm2/s for
the flow condition considered in eq. (11). Also, the
exit-flow-rate tolerance for g1 in eq. (11) is defined as e
¼ 0.0015.

The computational procedure of die-design opti-
mization is shown in Figure 8, which includes the
coupled fluid–structure interaction in the die-design
problem. Starting with initial values of the design
variables, the computer program calculates the pres-
sure and die-cavity half-height in a coupled analysis.
The values of the deformed die-cavity half-heights
are compared with the previous values until conver-
gence is reached. Upon completion of the coupled
fluid–structure analysis loop, a new design variable,
f, is computed with the DOT SQP algorithm.21

RESULTS AND DISCUSSION

A new design has been computed with the DOT
SQP algorithm21 in 19 optimization iterations with
gradients computed via the forward finite-difference
approximation. The optimization results for the die

design are summarized in Table I. The optimal his-
tory for Pin appears in Figure 9(a), and the value of
constraint g1 in eq. (11) is shown in Figure 9(b) at
each optimization iteration. In these calculations, the
pressure drop decreases from 10 to 6.57 MPa, a
34.3% reduction, whereas the exit-flow-rate con-
straint, g1, is reduced considerably from its initial
value of 1.34 to its optimal value of 0.00013, which is
well below e. Changes in the design variables are
also shown in Table I. The uniformity in the exit
flow rate is evidenced by the reduction in the differ-
ence between the maximum and minimum gapwise-
exit-velocity values. Moreover, the optimal average
exit flow rate per unit width is near the desired
value of 350 mm2/s.

The pressure distributions in the midplane of the
initial and optimal designs are shown in Figure
10(a,b), respectively. When the die deformation is
included in the design simulation, the die pressure
decreases as the die channel opens up. Since theFigure 8 Computational procedure for die-design optimi-

zation.

Figure 9 Design iteration history for the objective func-
tion and exit-flow-rate constraint. [Color figure can be
viewed in the online issue, which is available at www.in-
terscience.wiley.com.]
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Figure 10 Pressure distribution in the die cavity. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

Figure 11 Die-cavity half-height distributions. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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half-heights along the die exit are no longer uniform
because of the gap opening, the pressure isobars will
not be parallel to the die exit. As expected, the iso-
bars just inside the die exit of the initial design are
more parallel than those of the optimal design, as
shown in Figure 10(a,b), respectively. The die-cavity
half-heights are presented in Figure 11(a) for the ini-
tial design and in Figure 11(b) for the optimal
design. The gap-thickness in the manifold and prel-
and regions of the optimal design are increased in
comparison with that of the initial design. The half-
height changes can also be seen in the secondary
manifold region (i.e., choker bar).

Die-exit flow rates are illustrated for the initial
and optimal designs in Figure 12, in which the dis-
tance along the die exit is normalized with the exit
width. The exit flow rates for the initial design are
far from the desired value and show a significantly
higher flow rate along the centerline of the die than
at its edge. The optimal die design provides a more
uniform exit flow rate, which illustrates how well
the design approach is able to meet the desired flow
rate over the entire width of the die. Figure 13
shows the die-exit flow rate and velocity distribution
for the optimal design and is provided here to illus-
trate the influence of die deformation on the uni-
formity of the flow distribution. The exit flow rate is
the product of the die-exit half-height and velocity.
For the uniform exit flow rate, the exit velocity will
decrease as the half-height increases. The die-exit
half-height, which is initially uniform across the die
exit, increases more in the center, resulting in a
lower velocity than that at the die’s outer edge.
Compared with the exit-velocity distribution, the
flow rate is more uniform. As can be seen in the
plot, the optimal design generates a nearly uniform
flow rate distribution at the die exit.

CONCLUSIONS

An optimization-based polymer-sheeting-die-design
methodology has been presented in this article, and
performance measures in the optimization have
been evaluated with a coupled flow analysis and 3D
simulation of die deformation. In this approach, sh-
eeting dies are analyzed with a general-purpose fi-
nite-element program, in which a user element pro-
gram is developed to evaluate the purely viscous
non-Newtonian flow in a die. An automatic algo-
rithm to calculate the coupled pressure and die de-
formation has been presented, and a sheeting-die-
design-optimization problem has illustrated the de-
sign approach.
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